Big Data Fundamentals and Applications

Principal Component Analysis - PCA

Outlines

1. Review
2. Why Do We Need Dimension Reduction?
3. PCA - Mathematical Explanation
4. PCA - Programming in Python
5. Part VIII Basic numerical methods (Scipy) Part IX Advanced numerical methods (Scipy)
6. Notice

Review

- Before we explain PCA, we need to review the mathematical meaning of three basic descriptive statistics, including expectation, variance, and covariance.

$$
\left.\begin{array}{c}
\mu=\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
\operatorname{var}(x)=\sigma^{2}=\left(\sqrt{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{ }^{2}\right.
\end{array}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} .
$$

- In previous courses or your understanding, these three parameters usually perform as above equations.

$$
\text { ReveMV } \mu=\frac{1}{n} \sum_{i=1}^{n} x_{i}\left|\operatorname{var}(x)=\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right| \operatorname{Cov}(x, y)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)
$$

$$
\mu=\frac{1}{n} \sum_{i=1}^{n} x_{i}\left|\operatorname{var}(x)=\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right| \operatorname{Cov}(x, y)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)
$$

$$
\text { Review } \left.\quad \mu=\frac{1}{n} \sum_{k=1}^{n} x_{i}\left|\operatorname{var}(x)=\sigma^{2}=\frac{1}{n} \sum_{n=1}^{n}\left(x_{i}-\mu\right)^{2}\right| \operatorname{Cov}(x, y)\right)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)
$$

- Pearson's correlation coefficient
- Given two parameters x_{i} and y_{i}, where i ranges from 1 to n. Then, Pearson's correlation coefficient could be defined as follows.

$$
\rho=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\mu_{x}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\mu_{y}\right)^{2}}}
$$

Question 1

If x is highly correlated with y, and then what do you expect from their covariance and standard deviations?

Review

- Expectation

$$
E(X)=\sum_{x} x P(X=x)=\mu
$$

- Variance

$$
\begin{aligned}
& \operatorname{var}(X)=E\left([X-\mu]^{2}\right) \\
& =E\left(X^{2}-2 \mu X+\mu^{2}\right) \\
& =E\left(X^{2}\right)-2 \mu E(X)+\mu^{2} \\
& =E\left(X^{2}\right)-2 \mu^{2}+\mu^{2} \\
& =E\left(X^{2}\right)-\mu^{2} \\
& =E\left(X^{2}\right)-E(X)^{2}
\end{aligned}
$$

Characteristics of Expectation

 $E(a X+b Y)=a E(X)+b E(Y), \mathrm{a}, \mathrm{b} \in \mathbb{R}$ X and Y can be independent or dependent.$$
E(X Y)=E(X) E(Y)
$$

$$
\text { Where } \operatorname{cov}(X, Y)=0
$$

Review

```
E(aX+bY)=aE(X)+bE(Y),\textrm{a},\textrm{b}\in\mathbb{R}
X and }Y\mathrm{ can be independent or dependent.
E(XY) = E (X)E(Y)
Where cov(X,Y) = 0
```

- Covariance
- If x and y are independent...

$$
\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)
$$

- If x and y are dependent...

$$
\begin{aligned}
& \operatorname{var}(X+Y)=E\left([(X+Y)-E(X+Y)]^{2}\right) \\
& =E\left([(X+Y)-(E(X)+E(Y))]^{2}\right) \\
& =E\left([(X-E(X))+(Y-E(Y))]^{2}\right) \\
& =E\left((X-E(X))^{2}+2(X-E(X))(Y-E(Y))+(Y-E(Y))^{2}\right) \\
& =E\left[(X-E(X))^{2}\right]+E\left[(Y-E(Y))^{2}\right]+2 E[(X-E(X))(Y-E(Y))] \\
& =\operatorname{var}(X)+\operatorname{var}(Y)+2 \operatorname{cov}(X, Y)
\end{aligned}
$$

Why Do We Need Dimension Reduction?

- Here comes the first question into your mind.
- Why do we need dimension reduction?
- What's the importance of dimension reduction?
- Can we directly import all datasets into your model without dimension reduction?
- Statistical models (e.g., linear regression) have several assumptions when you adopt them. One of them is "all variables have to be linearly independent," indicating no collinearity.
- To achieve this goal, various methods were developed for orthogonalizing parameters and reducing the dimension of the dataset, such as PCA, LDA, LLE, and Laplacian Eigenmaps.

PCA - Math

$$
\cos \theta=\frac{x_{i}^{T} \cdot v}{\left\|x_{i}\right\|\|v\|}
$$

- Given a point " x " and project onto a vector " v ".

$$
\left\|x_{i}\right\| \cos \theta=\left\|x_{i}\right\| \frac{x_{i}^{T} \cdot v}{\left\|x_{i}\right\|\|v\|}=\frac{x_{i}^{T} \cdot v}{\|v\|}
$$

$$
\text { if } v \text { is unit vector } \ldots\|v\|=1
$$

$$
=\frac{x_{i}^{T} \cdot v}{\|v\|}=x_{i}^{T} \cdot v
$$

PCA - Math

$$
\begin{gathered}
X=\left[\begin{array}{cccc}
1 & \mid & \cdots & \mid \\
x_{1} & x_{2} & \cdots & x_{n} \\
\mid & \mid & \cdots & \mid
\end{array}\right] \rightarrow X^{T}=\left[\begin{array}{ccc}
- & x_{1} & - \\
- & x_{2} & - \\
- & \vdots & - \\
- & x_{n} & -
\end{array}\right] \\
P=\left[\begin{array}{c}
x_{1}{ }^{T} \\
x_{2}{ }^{T} \\
\vdots \\
x_{n}{ }^{T}
\end{array}\right]=X^{T} u \Rightarrow \text { solve } P
\end{gathered}
$$

PCA - Math

$$
J(u)=\left\|P^{2}\right\|=P^{T} P=\left(X^{T} u\right)^{T}\left(X^{T} u\right)=u^{T} X X^{T} u
$$

$\operatorname{argmax} J(u)=u^{T} X X^{T} u$, where subject to $u^{T} u=1$
u
Add Lagrange multiplier $\operatorname{argmax} J(u, \lambda)=u^{T} X X^{T} u+\lambda\left(1-u^{T} u\right)$
u, λ
$\nabla_{u} J(u, \lambda)=\nabla_{u}\left(u^{T} X X^{T} u+\lambda\left(1-u^{T} u\right)\right)=0$
$\Rightarrow 2 X X^{T} u-2 \lambda u=0$
$\Rightarrow \frac{X X^{T}}{\downarrow} u=\frac{\lambda h u}{\downarrow} \rightarrow$ eigenvector $\longrightarrow A u=\lambda u$
$\operatorname{cov}(X)$ eigenvalue

PCA - Math

when u is the eigen vector
$J(u)=\left\|P^{2}\right\|=u^{T} X X^{T} u=u^{T} \lambda u=\lambda u^{T} u=\lambda$
Given an eigenvector, the total square of projected values is the eigenvalue $=\lambda$

$$
X X^{T} u=\lambda u
$$

Eigenvector is a symmetry matrix u is an unit vector

$$
u u^{T}=u^{T} u=1
$$

PCA - Math

$$
X X^{T} u=\lambda u
$$

A is a square symmetric matrix has orthogonal eigenvectors with different eigenvalues.
$\left[x_{1}, \lambda_{1}\right],\left[x_{2}, \lambda_{2}\right]$
$\left\{\begin{array}{l}A x_{1}=\lambda_{1} x_{1} \\ A x_{2}=\lambda_{2} x_{2}\end{array}\right.$
$x_{1}{ }^{T} A x_{2}=x_{1}{ }^{T} \lambda_{2} x_{2}=\lambda_{2} x_{1}{ }^{T} x_{2}$
$x_{1}{ }^{T} A^{T} x_{2}=\left(A x_{1}\right)^{T} x_{2}=\left(\lambda_{1} x_{1}\right)^{T} x_{2}=\lambda_{1} x_{1}{ }^{T} x_{2}$
$\left(\because A \in\right.$ symmetric matrix, $\left.\therefore A=A^{T}\right)$

Eigenvector is a symmetry matrix u is an unit vector

$$
u u^{T}=u^{T} u=1
$$

$$
\lambda_{2} x_{1}{ }^{T} x_{2}=\lambda_{1} x_{1}{ }^{T} x_{2}
$$

$$
x_{1}^{T} x_{2}\left(\underline{\lambda_{2}-\lambda_{1}}\right)=0
$$

Orthogonal All eigenvalues
$x_{1}{ }^{T} x_{2}=0$ are different

PCA - Math

- Conversion between orthogonal bases

$$
\begin{aligned}
& u_{i} \cdot u_{j}=u_{i}^{T} \cdot u_{j}=\left\{\begin{array}{c}
1, \text { if } i=j \\
0, \text { otherwise }
\end{array}\right. \\
& U=\left[\begin{array}{cccc}
\mid & \mid & \mid \\
u_{1} & u_{2} & \ldots & u_{d} \\
\mid & \mid & \mid
\end{array}\right] \Rightarrow U^{T} U=I=U^{-1}=U^{T} \\
& x=y_{1} u_{1}+y_{2} u_{2}+\cdots+y_{d} u_{d}=\left[\begin{array}{cccc}
\mid & \mid & \mid \\
u_{1} & u_{2} & \cdots & u_{d} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{d}
\end{array}\right]=U y
\end{aligned}
$$

$$
\Rightarrow y=U^{-1} x=U^{T} x
$$

PCA - Math

PCA - Math

$X X^{T} v=\lambda v \Rightarrow A V=\lambda V$
$J(u)=\left\|P^{2}\right\|=P^{T} P=\left(X^{T} u\right)^{T}\left(X^{T} u\right)=u^{T} X X^{T} u$
$\operatorname{argmax} J(u)=u^{T} X X^{T} u$, where subject to $u^{T} u=1$
Add Lagrange multiplier
$\operatorname{argmax} J(u, \lambda)=u^{T} X X^{T} u-\lambda\left(1-u^{T} u\right)$
where V is eigenvector and λ is eigenvalue.
$\nabla_{u}{ }_{u} J(u, \lambda)=\nabla_{u}\left(u^{T} X X^{T} u-\lambda\left(1-u^{T} u\right)\right)=0$
$\Rightarrow 2 X X^{T} u-2 \lambda u=0$
$\Rightarrow X X^{T} u=\lambda u \rightarrow$ eigenvect
Principal component PC
$A V=\lambda V$

From Singular Vector Decomposition (SVD)

$A=U \Sigma V^{T} \Rightarrow A V=U \Sigma \Rightarrow \lambda=\frac{\Sigma^{2}}{N}, \therefore A V=U \Sigma$
Variable loading L (A onto PC)
Standardize PC $=\sqrt{N} U$
$\operatorname{cov}(A, P C)=\frac{A^{T} \sqrt{N} U}{N}=\frac{V \Sigma U^{T} U}{\sqrt{N}}=V \frac{\Sigma}{\sqrt{N}}=V \sqrt{E}=L$

PCA - Math

The steps of PCA

1. Find the sample mean $\mu=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
2. Subtract mean
3. Compute covariance matrix $C=\frac{1}{n} X X^{T}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)\left(x_{i}-\mu\right)$
4. Find the eigenvalues of C and arrange them into descending order

$$
\lambda_{1}>\lambda_{2}>\cdots>\lambda_{d},\left\{u_{1}, u_{2}, \ldots, u_{d}\right\}
$$

5. The transformation is $y=U^{T} X$.

PCA - Python

learn Install User Guide API Examples Community More \square
Prev Up Next
scikit-learn 1.1.2 Other versions

Please cite us if you use the software.
sklearn.decomposition.PCA
Examples using
sklearn.decomposition.PCA

sklearn.decomposition.PCA

class sklearn.decomposition. PCA(n_components=None, *, copy=True, whiten=False, svd_solver='auto', tol=0.0 iterated_power='auto', n_oversamples=10, power_iteration_normalizer='auto', random_state=None)

Principal component analysis (PCA).
Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional space. The input data is centered but not scaled for each feature before applying the SVD.

It uses the LAPACK implementation of the full SVD or a randomized truncated SVD by the method of Halko et al. 2009, depending on the shape of the input data and the number of components to extract.

It can also use the scipy.sparse.linalg ARPACK implementation of the truncated SVD.
Notice that this class does not support sparse input. See TruncatedSvD for an alternative with sparse data.
Read more in the User Guide.

Parameters:: n_components : int, float or 'mle', default=None

Number of components to keep. if n _components is not set all components are kept:
$\mathrm{n}_{\text {_ components }}==\min \left(\mathrm{n}\right.$ samples, $\mathrm{n}_{\text {_f }}$ features)
If n _components $==$ ' mle ' and svd_solver $==$ 'full', Minka's MLE is used to guess the dimension. Use of n_components == 'mle' will interpret svd_solver == 'auto' as svd_solver == 'full'.

If θ < n _components < 1 and svd_solver == 'full', select the number of components such that the amount of variance that needs to be explained is greater than the percentage specified by n _components.

If svd_solver $==$ 'arpack' , the number of components must be strictly less than the minimum of n_{-}features and n _samples.

PCA - Python

\# linear algebra

from sklearn.decomposition import PCA
\# call PCA
pca = PCA(n_components=2) \# number of preserved components pca.fit(X)
\# show results
print(pca.mean_) \# mean
print(pca.explained_variance_) \# eigenvalues
print(pca.components_) \# eigenvectors

Notice

- Advantages of PCA
- Easy to use
- Accelerate model fitting
- Avoid overfitting
- Disadvantage of PCA
- Low interpretability
- The trade-off between information loss and features (dimensions)
- Limitations of PCA
- Linear relationship between features
- Correlation between features
- Sensitive to the scale of data
- Not robust to outliers
- Not accept missing values

Question Time

If you have any questions，please do not hesitate to ask me．

References：

張智星 科學計算講義
Sklearn

The End

Thank you for your attention))

