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• Before we explain PCA, we 

need to review the 

mathematical meaning of 

three basic descriptive 

statistics, including 

expectation, variance, and 

covariance.

Review

2

𝜇 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖

𝑣𝑎𝑟(𝑥) = 𝜎2 =
σ𝑖=1
𝑛 𝑥𝑖 − 𝜇 2

𝑛

2

=
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 − 𝜇 2

𝐶𝑜𝑣(𝑥, 𝑦) =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 − 𝜇𝑥 𝑦𝑖 − 𝜇𝑦

• In previous courses or your understanding, these three 

parameters usually perform as above equations.
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Review 𝜇 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 | 𝑣𝑎𝑟(𝑥) = 𝜎2 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 − 𝜇 2 | 𝐶𝑜𝑣(𝑥, 𝑦) =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 − 𝜇𝑥 𝑦𝑖 − 𝜇𝑦

Take a look at the data distribution, how do you explain 

your observation the relationship between x and y?
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Review 𝜇 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 | 𝑣𝑎𝑟(𝑥) = 𝜎2 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 − 𝜇 2 | 𝐶𝑜𝑣(𝑥, 𝑦) =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 − 𝜇𝑥 𝑦𝑖 − 𝜇𝑦

Is there any statistical indicator to describe 

the relationship between x and y?
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Review 𝜇 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 | 𝑣𝑎𝑟(𝑥) = 𝜎2 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 − 𝜇 2 | 𝐶𝑜𝑣(𝑥, 𝑦) =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 − 𝜇𝑥 𝑦𝑖 − 𝜇𝑦

• Pearson‘s correlation coefficient

• Given two parameters 𝑥𝑖 and 𝑦𝑖, 
where 𝑖 ranges from 1 to 𝑛.

Then, Pearson’s correlation 

coefficient could be defined as follows.

𝜌 =
σ𝑖=1
𝑛 𝑥𝑖 − 𝜇𝑥 𝑦𝑖 − 𝜇𝑦

σ𝑖=1
𝑛 𝑥𝑖 − 𝜇𝑥

2 σ𝑖=1
𝑛 𝑦𝑖 − 𝜇𝑦

2

Question 1

If x is highly correlated with y,

and then what do you expect

from their covariance and

standard deviations?
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Review

• Expectation

𝐸 𝑋 =෍

𝑥

𝑥𝑃 𝑋 = 𝑥 = 𝜇

• Variance

𝑣𝑎𝑟 𝑋 = 𝐸 𝑋 − 𝜇 2

= 𝐸 𝑋2 − 2𝜇𝑋 + 𝜇2

= 𝐸 𝑋2 − 2𝜇𝐸 𝑋 + 𝜇2

= 𝐸 𝑋2 − 2𝜇2 + 𝜇2

= 𝐸 𝑋2 − 𝜇2

= 𝐸 𝑋2 − 𝐸 𝑋 2

Characteristics of Expectation

𝐸 𝑎𝑋 + 𝑏𝑌 = 𝑎𝐸 𝑋 + 𝑏𝐸 𝑌 , a, b ∈ ℝ
X and Y can be independent or 

dependent.

𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸(𝑌)
Where 𝑐𝑜𝑣(𝑋, 𝑌) = 0
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Review

• Covariance

• If 𝑥 and 𝑦 are independent…

𝑣𝑎𝑟 𝑋 + 𝑌 = 𝑣𝑎𝑟 𝑋 + 𝑣𝑎𝑟 𝑌

• If 𝑥 and 𝑦 are dependent…

𝑣𝑎𝑟 𝑋 + 𝑌 = 𝐸 (𝑋 + 𝑌) − 𝐸 𝑋 + 𝑌 2

= 𝐸 𝑋 + 𝑌 − 𝐸 𝑋 + 𝐸 𝑌
2

= 𝐸 𝑋 − 𝐸 𝑋 + 𝑌 − 𝐸 𝑌
2

= 𝐸 𝑋 − 𝐸 𝑋
2
+ 2 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌 + 𝑌 − 𝐸 𝑌

2

= 𝐸 𝑋 − 𝐸 𝑋
2
+ 𝐸 𝑌 − 𝐸 𝑌

2
+ 2𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌

= 𝑣𝑎𝑟 𝑋 + 𝑣𝑎𝑟 𝑌 + 2𝑐𝑜𝑣(𝑋, 𝑌)

𝐸 𝑎𝑋 + 𝑏𝑌 = 𝑎𝐸 𝑋 + 𝑏𝐸 𝑌 , a, b ∈ ℝ
X and Y can be independent or dependent.

𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸(𝑌)
Where 𝑐𝑜𝑣(𝑋, 𝑌) = 0
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Why Do We Need Dimension Reduction?

• Here comes the first question into your mind.
• Why do we need dimension reduction?

• What’s the importance of dimension reduction?

• Can we directly import all datasets into your model without dimension
reduction?

• Statistical models (e.g., linear regression) have several assumptions
when you adopt them. One of them is “all variables have to be
linearly independent,” indicating no collinearity.

• To achieve this goal, various methods were developed for
orthogonalizing parameters and reducing the dimension of the
dataset, such as PCA, LDA, LLE, and Laplacian Eigenmaps.
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PCA – Math 𝜇 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 | 𝑣𝑎𝑟(𝑥) = 𝜎2 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 − 𝜇 2 | 𝐶𝑜𝑣(𝑥, 𝑦) =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 − 𝜇𝑥 𝑦𝑖 − 𝜇𝑦

Find an axis to maximize the variance of all 

data points onto projection line.
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PCA – Math

• Given a point “𝑥” and project onto a vector “𝑣”.

𝑥𝑖

𝑥𝑖

𝜃 𝑥𝑖 𝑐𝑜𝑠𝜃

𝑥𝑖 𝑐𝑜𝑠𝜃 = 𝑥𝑖
𝑥𝑖

𝑇∙𝜈

𝑥𝑖 𝜈
=

𝑥𝑖
𝑇∙𝜈

𝜈

𝑖𝑓 𝑣 𝑖𝑠 𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 … 𝜈 = 1

=
𝑥𝑖

𝑇 ∙ 𝜈

𝜈
= 𝑥𝑖

𝑇 ∙ 𝜈

റ𝜈

𝑐𝑜𝑠𝜃 =
𝑥𝑖

𝑇 ∙ 𝜈

𝑥𝑖 𝜈
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PCA – Math

𝑋 =
| | ⋯ |
𝑥1 𝑥2 ⋯ 𝑥𝑛
| | ⋯ |

→ 𝑋𝑇 =

− 𝑥1 −
−
−

𝑥2
⋮

−
−

− 𝑥𝑛 −

𝑃 =

𝑥1
𝑇

𝑥2
𝑇

⋮
𝑥𝑛

𝑇

= 𝑋𝑇𝑢 ⇒ 𝑠𝑜𝑙𝑣𝑒 𝑃
𝑥𝑖

𝑇 ∙ 𝜈
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PCA – Math

𝐽 𝑢 = 𝑃2 = 𝑃𝑇𝑃 = 𝑋𝑇𝑢 𝑇 𝑋𝑇𝑢 = 𝑢𝑇𝑋𝑋𝑇𝑢

argmax 𝐽 𝑢 =𝑢𝑇𝑋𝑋𝑇𝑢,𝑤ℎ𝑒𝑟𝑒 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑢𝑇𝑢 = 1

Add Lagrange multiplier

argmax 𝐽 𝑢, 𝜆 =𝑢𝑇𝑋𝑋𝑇𝑢 + 𝜆 1 − 𝑢𝑇𝑢

∇𝑢 𝐽 𝑢, 𝜆 =∇𝑢 𝑢𝑇𝑋𝑋𝑇𝑢 + 𝜆 1 − 𝑢𝑇𝑢 = 0

⇒ 2𝑋𝑋𝑇𝑢 − 2𝜆𝑢 = 0
⇒ 𝑋𝑋𝑇𝑢 = 𝜆𝑢

𝑢

𝑢, 𝜆

eigenvector

eigenvalue𝑐𝑜𝑣(𝑋)

𝐴𝑢 = 𝜆𝑢
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PCA – Math

𝑤ℎ𝑒𝑛 𝑢 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟
𝐽 𝑢 = 𝑃2 = 𝑢𝑇𝑋𝑋𝑇𝑢 = 𝑢𝑇𝜆𝑢 = 𝜆𝑢𝑇𝑢 = 𝜆

Given an eigenvector, the total square of 

projected values is the eigenvalue = 𝜆

𝑋𝑋𝑇𝑢 = 𝜆𝑢

Eigenvector is a symmetry matrix

𝑢 is an unit vector

𝑢𝑢𝑇 = 𝑢𝑇𝑢 = 1
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PCA – Math

A is a square symmetric matrix has orthogonal 

eigenvectors with different eigenvalues.

𝑥1, 𝜆1 , 𝑥2, 𝜆2

ቊ
𝐴𝑥1 = 𝜆1𝑥1
𝐴𝑥2 = 𝜆2𝑥2
𝑥1

𝑇𝐴𝑥2 = 𝑥1
𝑇𝜆2𝑥2 = 𝜆2𝑥1

𝑇𝑥2
𝑥1

𝑇𝐴𝑇𝑥2 = 𝐴𝑥1
𝑇𝑥2 = 𝜆1𝑥1

𝑇𝑥2 = 𝜆1𝑥1
𝑇𝑥2

(∵ 𝐴 ∈ 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥, ∴ 𝐴 = 𝐴𝑇)

𝑋𝑋𝑇𝑢 = 𝜆𝑢

Eigenvector is a symmetry matrix

𝑢 is an unit vector

𝑢𝑢𝑇 = 𝑢𝑇𝑢 = 1

Equal

𝜆2𝑥1
𝑇𝑥2 = 𝜆1𝑥1

𝑇𝑥2
𝑥1

𝑇𝑥2 𝜆2 − 𝜆1 = 0

Orthogonal

𝑥1
𝑇𝑥2 = 0

All eigenvalues 

are different
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PCA – Math

• Conversion between orthogonal bases

𝑢𝑖 ∙ 𝑢𝑗 = 𝑢𝑖
𝑇 ∙ 𝑢𝑗 = ቊ

1, 𝑖𝑓 𝑖 = 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑈 =
|
𝑢1
|

|
𝑢2
|

⋯

|
𝑢𝑑
|

⇒ 𝑈𝑇𝑈 = 𝐼 = 𝑈−1 = 𝑈𝑇

𝑥 = 𝑦1𝑢1 + 𝑦2𝑢2 +⋯+ 𝑦𝑑𝑢𝑑 =
|
𝑢1
|

|
𝑢2
|

⋯

|
𝑢𝑑
|

𝑦1
𝑦2
⋮
𝑦𝑑

= 𝑈𝑦

⇒ 𝑦 = 𝑈−1𝑥 = 𝑈𝑇𝑥
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PCA – Math

𝑋𝑋𝑇𝑣 = 𝜆𝑣 ⇒ 𝐴𝑉 = 𝜆𝑉

where 𝑉 is eigenvector and 𝜆 is eigenvalue.

Principal component 𝑷𝑪
𝐴𝑉 = 𝜆𝑉

From Singular Vector Decomposition (SVD)

𝐴 = 𝑈Σ𝑉𝑇 ⇒ 𝐴𝑉 = 𝑈Σ ⇒ 𝜆 =
Σ2

𝑁
, ∴ 𝐴𝑉 = 𝑈Σ

Variable loading L (A onto PC)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒 𝑃𝐶 = 𝑁𝑈

𝑐𝑜𝑣 𝐴, 𝑃𝐶 =
𝐴𝑇 𝑁𝑈

𝑁
=
𝑉Σ𝑈𝑇𝑈

𝑁
= 𝑉

Σ

𝑁
= 𝑉 𝐸 = 𝐿
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PCA – Math

The steps of PCA

1. Find the sample mean 𝜇 =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖

2. Subtract mean

3. Compute covariance matrix 𝐶 =
1

𝑛
𝑋𝑋𝑇 =

1

𝑛
σ𝑖=1
𝑛 𝑥𝑖 − 𝜇 𝑥𝑖 − 𝜇

4. Find the eigenvalues of C and arrange them into descending 

order

𝜆1 > 𝜆2 > ⋯ > 𝜆𝑑 , {𝑢1, 𝑢2, … , 𝑢𝑑}
5. The transformation is 𝑦 = 𝑈𝑇𝑋.
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PCA – Python
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PCA – Python

# linear algebra

from sklearn.decomposition import PCA

# call PCA

pca = PCA(n_components=2) # number of preserved components

pca.fit(X)

# show results

print(pca.mean_) # mean

print(pca.explained_variance_) # eigenvalues

print(pca.components_) # eigenvectors
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Notice

• Advantages of PCA
• Easy to use

• Accelerate model fitting

• Avoid overfitting

• Disadvantage of PCA
• Low interpretability

• The trade-off between information
loss and features (dimensions)

• Limitations of PCA
• Linear relationship between

features

• Correlation between features

• Sensitive to the scale of data

• Not robust to outliers

• Not accept missing values

Source: https://www.keboola.com/blog/pca-machine-learning

https://www.keboola.com/blog/pca-machine-learning


Question Time

If you have any questions, please do not hesitate 
to ask me.

References:
張智星科學計算講義

Sklearn
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The End
Thank you for your attention ))

Big Data Fundamentals and Applications

Principal Component Analysis – PCA
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